

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/42

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

© UCLES 2016

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
1(a)	(an element) forming (one or more stable) ions with incomplete d subshell [1]	1 1
1(b)(i)	co-ordination number oxidation number	
	[Ni(CN) ₂ (NH ₃) ₂] 4 +2	
	$[CrCl_2(H_2O)_4]^+$ 6 +3	
		2
1(b)(ii)	dative (covalent)/co-ordinate	1 1
1(b)(iii)	correct diagram of [Ni(CN) ₂ (NH ₃) ₂] NC NH ₃ NC CN Ni Or Ni CN H ₃ N NH ₃ Or H ₃ N Or CN	1
	square planar or tetrahedral	1 2
1(c)(i)	(concentrated) hydrochloric acid / soluble chloride ion	1 1
1(c)(ii)	ligand exchange/substitution	1 1
1(d)(i)	cis-trans (isomerism) / geometric(al)	1 1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
1(d)(ii)	one 3D isomer one correct isomer other isomer correct in 3D $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1 1 1 3
	Total:	12

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Mar	ks
2(a)	$NaN_3 \rightarrow Na + 1.5N_2$	1	1
2(b)	all atoms must have 8 outer electrons coding for electrons correct = 16 (10 × 5 • 1 □) central N must have 8 bonding electrons (inc. 5 • and no non-bonded electrons) allow X	1 1 1	3
2(c)(i)	(energy change) when 1 mole of an (ionic) compound is formed or (energy change) when 1 mole of an <u>ionic</u> solid/lattice/crystal is formed (from) gas (phase) ions/gaseous ions (under standard conditions)	1	2
2(c)(ii)	forming an (ionic) bond	1	1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Mai	rks
2(c)(iii)	use of ΔH_{i1} 494 (kJ mol ⁻¹) $\Delta H_{f}^{e} = +107+494+142-732$ $\Delta H_{f}^{e} = +11$ (kJ mol ⁻¹)	1 1 1	3
2(c)(iv)	(ionic) radius / size of Na ⁺ is smaller (so stronger attraction to azide ion) OR ionic radius increases down the group	1	1
	Total:		11

Question	Answer	Mark
3(a)	Fe [Ar] 3d ⁶ 4s ² Fe ³⁺ [Ar] 3d ⁵	1 1 2
3(b)(i)	(catalyst is in) the same phase/state as the reactants	1 1
3(b)(ii)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$	1 1
3(b)(iii)	(two) negatively-charged species repel each other	1 1
3(b)(iv)	Equation 1: $2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$	1
	Equation 2: $S_2O_8^{2-} + 2Fe^{2+} \rightarrow 2SO_4^{2-} + 2Fe^{3+}$	1 2

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Mari	ks
3(c)(i)	(entropy is a measure/degree of the) disorder of a system/substance	1	
			1
3(c)(ii)	$\Delta S^{e} = (2 \times 27) + (3 \times 214) - (90) - (3 \times 198)$ OR 696 - 684	1	
	$\Delta S^{e-} = (+) 12 (J K^{-1} mol^{-1})$	1	2
3(c)(iii)	$\Delta G^{\circ} = -43.6 - (298 \times 12/1000)$	1	
	$\Delta G^{-} = -47.2 \text{ (kJ mol}^{-1}\text{)}$	1	2
3(c)(iv)	high E_a and to speed up the rate	1	1
	Total:		13

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
4(a)	d orbitals split into lower and upper orbitals	1
	light/photon absorbed	1
	electron(s) promoted/excited/jumps up to (higher) (d–) orbital or electron(s) moves/jumps (from lower (d–)) to higher (d–) orbital	1 3
4(b)(i)	$Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$ or ionic $Cu + 4H^+ + 2NO_3^- \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$ correct species correct balancing	1 1 2
4(b)(ii)	moles $S_2O_3^{2-} = 0.1 \times 22.4 / 1000 = 2.24 \times 10^{-3}$	1
	moles of Cu^{2+} in $25 \text{ cm}^3 = 2.24 \times 10^{-3}$	1
	moles of Cu^{2+} in $250 \text{ cm}^3 = 2.24 \times 10^{-2}$ mass of $Cu = 2.24 \times 10^{-2} \times 63.5 = 1.4224 \text{ g}$	1
	% Cu = 1.42/1.75×100 = 81.1 or 81.3 %	1 4
	Total:	9

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
5(a)	$K_{\rm a} = \frac{[{\rm HPO_4}^{2-}][{\rm H_3O^+}]}{[{\rm H_2PO_4}^{-}]}$	1
5(b)(i)	a solution that resists changes in pH when small amounts of acid and base/alkali are added	1 1 2
5(b)(ii)	addition of acid: $H^+ + HPO_4^{2-} \rightarrow H_2PO_4^-$ OR $H^+ + H_2PO_4^- \rightarrow H_3PO_4$ addition of base: $HO^- + H_2PO_4^- \rightarrow HPO_4^{2-} + H_2O$ OR $OH^- + HPO_4^{2-} \rightarrow H_2O + PO_4^{3-}$	1 1 2
5(c)	$[H^{+}] = 10^{-7.4} = 3.98 \times 10^{-8}$ $[HPO_{4}^{2-}]/[H_{2}PO_{4}^{-}] = K_{a}/[H^{+}]$ $([HPO_{4}^{2-}]/[H_{2}PO_{4}^{-}]) = 6.31 \times 10^{-8}/3.98 \times 10^{-8} = 1.58-1.6$	1 1 1 3
5(d)(i)	$HCl + H_2PO_4^- \rightarrow H_3PO_4 + Cl^-$ OR $H^+ + H_2PO_4^- \rightarrow H_3PO_4$ OR $H_2O + H_2PO_4^- \rightarrow H_3PO_4 + OH^-$	1 1

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
5(d)(ii)	NaOH + HPO ₄ ²⁻ \rightarrow PO ₄ ³⁻ + H ₂ O + Na ⁺ OR OH ⁻ + HPO ₄ ²⁻ \rightarrow PO ₄ ³⁻ + H ₂ O	
	OR $H_2O + HPO_4^{2-} \rightarrow PO_4^{3-} + H_3O^+$	1 1
	Total:	10

Question	Answer	Marks
6(a)	* O * O	1
6(b)(i)	ratio of the concentration of a solute in the (two immiscible) solvents/liquids	1
	at equilibrium	1 2
6(b)(ii)	$K_{\text{partition}} = (0.06/40)/(0.25-0.06/10)$ or reversed ratio: $K_{\text{partition}} = (0.25-0.06/10)/(0.06/40)$	1
	$K_{\text{partition}} = 0.079 (0.0789)$ $K_{\text{partition}} = 12.7/13.0$	1 2

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question		Answer		Marks
6(c)	reagent	structure of product(s)	type of reaction	
	excess Br ₂ (aq)	addition of bromine to alkene 2×Br substituted in phenol at positions 2 and 6	(electrophilic) substitution or (electrophilic) addition	1
	NaBH₄	НО	reduction (allow nucleophilic addition)	1

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
	excess hot NaOH(aq)	1+1
	all three reaction types	1 6
6(d)	mixture of (two) optical/stereo isomers formed	1 1
	Total:	12

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer	Marks
7(a)(i)	electrophilic substitution	1 1
7(a)(ii)	$(Br_2 + AlBr_3) \rightarrow Br^+ + AlBr_4^-$	1
	curly arrow from ring system to Br ⁺ correct intermediate curly arrow from C–H bond into ring and loss of H ⁺	1 1 1
7(b)	both amide	1 1
7(c)(i)	step 1, AlBr ₃ and CH ₃ Br OR other suitable halogen instead of Br	1
	step 2, KMnO ₄ or potassium manganate(VII)	1
	step 3, conc. H ₂ SO ₄ and conc. HNO ₃	1
	step 4. Sn and (conc.) HCl (heat)	1
		4

Page 13	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer		
7(c)(ii)	$Br \longrightarrow OH$ $Br \longrightarrow CI$		
	Br NH ₂ T 1 mark for each correct structure		
	Thank for each correct structure	3	
7(d)(i)	$Br \overset{NH}{\longleftarrow} CH_3$		
	1 mark for each correct structure	2	
7(d)(ii)	reduction	1 1	

Page 14	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer		
7(e)(i)	Br—NH ₃ Cl CH ₃ COOH		
	(or ionic) 1 mark for each correct structure	2	
7(e)(ii)	Br—OH	1	
7(e)(iii)	(precipitate) compound is less polar/more non-polar/non-ionic resulting in less hydrogen bonding to water	1 1	
	Total:	20	

Page 15	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question	Answer					
8(a)	102 × 0.314 = 32 (32.028) (102–32=70) and $(12 \times 5) + (1 \times 10) = 70$ OR F contains $CO_2H = 45$ so $102-45=57$ so C_4H_9					1
8(b)(i)	2 correct = 1 mark 3 correct = 2 marks					2
8(b)(ii)	2-methyl butanoic acid					
8(c)(i)	ОН					1
8(c)(ii)	δ/ppm	environment of the carbon atom	hybridisation of the carbon atom			
	27	alkyl/CH₃	sp ³			
	41	next to carboxyl/(CH ₃) ₃ C	sp ³			
	179	carboxyl/CO₂H	sp ²			2

Page 16	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9701	42

Question		Answer					Marks
8(d)(i)	δ/ppm	type of proton	number of protons	splitting			
	0.9	alkane/CH/CH ₃	6	doublet			
	1.6	alkane/CH	1	[multiplet]			
	2.4	alkyl next to C = O/CH ₍₂₎ CO/CH	2	doublet			
	11.5	OH/CO₂H/carboxylic acid	1	singlet			4
8(d)(ii)		ОН				1	1
8(e)	CDC l ₃	OR D ₂ O, DMSO, CD ₂ C <i>l</i> ₂ , CC <i>l</i> ₄				1	1
					Total	1	3